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Using the Legendre expansion of magnetic field distribution, this article derives the standard Cauer circuit representation of the 

frequency-dependent properties of magnetic sheets and discusses the physical meaning of the standard Cauer circuit.  The Cauer 
circuit is applied to the dynamic hysteresis modeling of silicon steel under the PWM excitation.  
 

Index Terms—Cauer realization, dynamic hysteresis, Legendre polynomial, pulse width modulation.  
 

I. INTRODUCTION 

ROGRESS in the semiconductor technology achieves the 
efficient power control with high frequency switching 

operation, which induces complex dynamic hysteretic 
magnetic fields in iron cores, where minor hysteresis loops 
and eddy-current fields with thin skin-depth are significant. 

Several homogenization methods [1]-[3] have been 
developed for the efficient analysis of laminated cores 
avoiding finite-element division along the stacking direction 
of silicon steel sheets. However, accurate evaluation of the 
eddy-current field in the steel sheet having nonlinear magnetic 
properties is difficult without one-dimensional sub-analysis 
along the stacking direction [1], [2]. 

A linear eddy-current theory derives the standard and 
physical Cauer circuit representations [3]-[5] of the frequency-
dependent properties of magnetic sheets. While the standard 
Cauer circuit is obtained directly from the linear theory, the 
physical Cauer circuit has been studied for the nonlinear 
analysis because its physical meaning is clear. In the nonlinear 
case, however, the physical Cauer circuit requires more 
inductive elements than expected from the linear circuit, even 
after circuit optimization [3].  

Deriving the standard Cauer circuit from the Legendre 
expansion of magnetic field, this study discusses the physical 
meaning of this circuit and applies it to the dynamic hysteresis 
modeling of steel sheet.  

II. DERIVATION OF CAUER CIRCUIT BY LEGENDRE EXPANSION 

A. Cauer realization 

The magnetic field in the steel sheet is governed by 

 2H/z2 = σB/t               (1) 

where σ is the conductivity. A linear eddy-current theory for 
the magnetic sheet gives the relation between the average 
magnetic flux density Bav and the surface magnetic field Hs as  

  Bav / Hs = μ (2/kd) tan(kd/2) = μ (2/jkd) tanh(jkd/2)  (2)  

where k = (−jωσμ)1/2, ω is the angular frequency, μ is the 
permeability, and d is the sheet thickness. By expanding 

tan(kd/2) or tanh(jkd/2), the relation (2) is represented by the 
infinite RL ladder circuit [4], [5] as is shown in Fig. 1, where μ 
and 4/σd2 are replaced by the inductance L and resistance R, 
respectively. This circuit is called standard Cauer circuit. 

B. Legendre expansion 

Ref. [2] developed a homogenization method using the 
Legendre expansion where the magnetic flux density 
distribution along the thickness direction is expanded by the 
Legendre polynomials P2n (n = 0, 1, …) as 
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This subsection derives the standard Cauer circuit using (3).  
By defining  

 P = [P0(2z/d), P2(2z/d), P4(2z/d), …]T       (4) 
 h = [h0(t), h2(t), h4(t), …]T  
    = (1/μ)[b0(t), b2(t), b4(t), …]T         (5) 

(1) is rewritten as  
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Using the relations,  
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 (6) is written as   
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where  

  Q = [P0(2z/d), 5P2(2z/d), 9P4(2z/d), …]T      (9) 
  13191511diagF          (10) 
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From (8) and the orthogonality of P2n(2z/d) in [2/d, 2/d],  

P



 
Fig. 1. Standard Cauer circuit. 

(a)  (b)  
Fig. 2. (a) Standard and (b) physical Cauer circuits. 
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is obtained. Since  
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(12) describes the state equation of the standard Cauer circuit 
shown in Fig. 1.  

When the frequency is low, h0(t) (≈ Hs(t)) is the dominant 
current and the flux change dΦ0/dt = Ldh0/dt induces the eddy-
current h2(t) ≈ (dBav/dt) / (3R). Accordingly, the magnetic flux 
Φ2 = (L/5)h2 is regarded as the secondary flux generated by the 
induced current h2. The physical meaning of standard Cauer 
circuit above, discussed in [6], is supported by the Legendre 
expansion. The uniformly distributed magnetic flux density 
b0P0 induces the eddy-current distributed linearly along the z-
direction, which yields the parabolically distributed b2P2. 

By truncating the standard Cauer circuit as shown in Fig. 
2(a), it can be converted equivalently to another RL ladder 
circuit as shown in Fig. 2(b). This is called the physical Cauer 
circuit because the ratio of the inductances corresponds to the 
nonuniform physical division [3]-[5] of the half thickness d/2. 
The equivalence of truncated standard Cauer circuit to the 
homogenization method in [2] will be proven in the full paper.  

C. Nonlinear inductors 

When the static magnetic property of a steel sheet has 
nonlinearity represented by Hs = hDC(Bav), the inductor L is 
replaced by the relationship h0 = hDC(Φ0). Magnetic fluxes Φ2, 
Φ4, … can be regarded as corrections to flux Φ0. If the flux 
correction is small, it holds that 

 Hs = hDC(Φ0+ΔΦ)  ≈ hDC(Φ0) + (1/μd)ΔΦ      (14) 

where μd = [dhDC(Φ0)/dΦ0]
−1 is the differential permeability. 

Replacing L by μd, the relation between h2n and Φ2n (n = 1, 2, 
…) is approximated as  

 h2n = (4n+1) Φ2n / μd .              (15) 

III. NUMERICAL RESULT 

The standard Cauer circuit shown in Fig. 2(a) is applied to 
the dynamic hysteresis modeling of silicon steel sheet under 
the PWM excitation. The static hysteretic property H = hDC(B) 
is represented by the play model [7]. The fundamental and 
carrier frequencies are 50 Hz and 5 kHz. The former 
frequency component is not greatly affected by elements of 
L/5 and 7R whereas the latter component is affected by them 
and yields small minor hysteresis loops. Accordingly μd can be 
given by the incremental permeability of minor loops, which 
is roughly approximated by μrev = dhrev(B)/dB (see Fig. 3) 
where hrev(B) is the reversible component of hDC(B). Fig. 4(a) 
shows the simulated BH loops using a hysteretic inductor for 
the element L and a non-hysteretic inductor with μrev/5 for L/5, 
which agree with measured loops. In contrast, the classical 
eddy-current theory overestimates the component of carrier 
frequency as shown in Fig. 4(b). The representation of L/5 (, 
L/9, …) will be further discussed in the full paper, where the 
comparison with the finite element eddy-current analysis and 
the physical Cauer circuit representation will be presented.  

 
Fig. 3. Permeability for minor BH loop. 

 

Fig. 4. Simulated BH loops for 2 types of PWM wave forms where measured 
iron losses per cycle are 162 and 83 J/m3: (a) Cauer circuit and (b) classical 
eddy-current theory. 

IV. REFERENCES 
[1] O. Bottauscio, M. Chiampi, D. Chiarabaglio, “Advanced model of lami-

nated magnetic cores for two-dimensional field analysis,” IEEE Trans. 
Magn., vol. 36, pp. 561-573, May 2000. 

[2] J. Gyselinck, P. Dular, “A time-domain homogenization technique for 
laminated iron cores in 3-D finite-element models,” IEEE Trans. Magn., 
vol. 40, pp. 856-859, March 2004. 

[3] J.H. Krah, “Optimum discretization of a physical Cauer circuit,” vol. 41, 
IEEE Trans. Magn., pp. 1444-1447, May 2005. 

[4] E. Tarasiewicz, A. Morched, A. Narang, E.P. Dick, Frequency dependent 
eddy current models for nonlinear iron cores,” IEEE Trans. Power Syst., 
vol. 8, pp. 588-597,  May 1993. 

[5] Y. Shindo, O. Noro, “Simple circuit simulation models for eddy current 
in magnetic sheets and wires,” IEEJ Trans. FM, vol.134, pp. 173-181, 
Apr. 2014. 

[6] T. Miyazaki, T. Mifune, T. Matsuo, Y. Shindo, Y. Takahashi, K. Fujiwa-
ra, “Equivalent circuit modeling of dynamic hysteretic property of sili-
con steel sheet under PWM excitation,” J. Appl. Phys., vol. 117, 17D110, 
2015. 

[7] T. Matsuo, M. Shimasaki, “An identification method of play model with 
input-dependent shape function,” IEEE Trans. Magn., vol. 41, pp. 3112-
3114, Oct. 2005.  

L

 Hs

dBav 
dt

3R

L/5

7R

L/9

11R

L/13

Φ0
h0 h2 h4 h6Φ2 Φ4 Φ6

L

 Hs

dBav 
dt

3R

L/5

7R

Φ0
h0 h2 Φ2

3430R 
1587

20L/69 49L/69

10R
dBav 
dt

 Hs

H

B μrev minor 
loop

-80

-60

-40

-20

0

20

40

60

80

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

H
 (

A
/m

)

B (T)

PWM 1 PWM 2
161 J/m3  84 J/m3

(a)
measured

Cauer

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

   
  

B (T)

PWM 1 PWM 2
200 J/m3  94 J/m3

(b)
measured

classical


